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Summary

This paper describes recent developments in gun operat-

ing techniques at the Ames ballistic range complex. This

range complex has been in operation since the early

1960s. Behavior of sabots during separation and projec-

tile-target impact phenomena have long been observed by
means of short-duration flash X-rays: new versions allow

operation in the lower-energy ("soft") X-ray range and
have been found to be more effective than the earlier

designs. The dynamics of sabot separation is investigated
in some depth from X-ray photographs of sabots launched

in the Ames 1.0" and 1.5" guns; the sabot separation

dynamics appears to be in reasonably good agreement

with standard aerodynamic theory. Certain sabot packages
appear to suffer no erosion or plastic deformation on

traversing the gun barrel, contrary to what would be

expected. Gun erosion data from the Ames 0.5", 1.0", and

1.5" guns is examined in detail and can be correlated with

a particular non-dimensionalized powder mass parameter.

The gun erosion increases very rapidly as this parameter

is increased. Representative shapes of eroded gun barrels

are given. Guided by a computational fluid dynamics
(CFD) code, the operating conditions of the Ames 0.5"

and 1.5" guns were modified. These changes involved

(l) reduction in the piston mass, powder mass and

hydrogen fill pressure and (2) reduction in pump tube

volum e. while main raining hydrogen mass. These changes
resulted in muzzle velocity increases of 0.5-0.8 km/sec,

achieved simultaneously with 30-50 percent reductions in
gun erosion.

_Senior Research Scientist.

t Branch Scientist (retired).

I. Introduction

Ballistic ranges (ref. 1) provide much valuable informa-

tion on hypersonic aerodynamics and vehicle stability,

radiation from the gas surrounding vehicles in hypersonic
flight, impact of space debris on space vehicles and in

number of other areas. The Hyperveiocity Free Flight
(HFF) facility at NASA's Ames Research Center is a bal-

listic range complex that was built in 1963-64. Develop-

ment of launch guns and techniques was carried on

extensively until about 1969, but budget and schedule

pressures essentially froze technology at that state until
1993. However, over the time period 1993-96, there has

been considerable activity in the Ames ballistic range

complex. A number of techniques for improving the qual-
ity of range data, obtaining more reliable, consistent

launches, improving gun component life, and improving

gun performance have been developed and are reported
here.

The traditional "hard" X-ray techniques (ref. 2) frequently
result in rather poor definition of the projectile. New

X-ray techniques (using "soft" X-rays) will be shown to

yield improved resolution. Traditional sabot designs
(ref. 3) usually have a cylindrical outer surface which

rides on the bore of the barrel. A new design, presented
here, with three lands on the outer surface, is also shown

to produce consistent separations and a high percentage of

successful launches. X-ray examination of the separation
of these sabots suggests that the behavior of the sabots in

flight can be fairly well explained by the traditional aero-

dynamic theory. However, the elastic energy may be

important in the initial separation of the sabot on exiting
the barrel, and the behavior of the sabot in the barrel

seems, in some cases, to be completely elastic, showing
no evidence of wear against the barrel walls.

Selecting gun operating conditions to minimize erosion

(ref. 4) is a very important consideration for the launchers
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in ballistic ranges. Reducing gun erosion can significantly

increase the productivity of ballistic ranges (by reducing

the down-time needed to replace barrels) and can increase

the percentage of good launches obtained. Only very lim-
ited gun erosion data is available in the literature. A

detailed study of gun erosion data for the NASA Ames

0.5", 1.0", and 1.5" guns is presented here. This study

provides guidance on the selection of gun operating con-
ditions to limit gun erosion and demonstrates that reduced

gun erosion can be obtained upon reducing the pump tube

length (while maintaining the hydrogen mass in the pump

tube). The very detrimental effect of having helium in the

pump tube is also shown. Representative shapes of eroded

launch tubes for the Ames 0.5" and 1.5" guns are
presented.

Support for DWB by NASA (Contract NAS-2-14031) to

Eloret is gratefully acknowledged.

II. Soft X-rays

In common with most ballistic facilities, Ames uses flash

X-rays for information on sabot/model separation and

impact phenomena. In early operations, two 105 kV chan-

nels with a 70 nsec pulse duration were used. In recent
operations, two 150 kV/70 nsec channels were added. One

of the 105 kV channels has since failed. The original units

were manufactured by the Field Emission Corporation,

currently under Hewlett-Packard corporate ownership.

In the case of the recently acquired 150 kV channels, a

so-called "soft" or low energy option was available,

obtained by substituting a flash tube with a beryllium
window at the front for the usual X-ray flash tube. In this

case, the spectrum of X-rays emitted at the internal source

is the same, but the low-energy tail, which has relatively
low penetrating ability in most materials, is attenuated

much less by the beryllium and is available to expose the
film.

The usual film cassettes (for use with a hard X-ray sys-

tem) have a hard face (usually a phenolic plastic material)
and image-intensifying phosphor screens on both faces of
the double-coated film. The film cassettes for use with

soft X-rays are somewhat different: there is a minimal

protective layer and there is no intensifying screen on the

source side. In the present instance, a package of corru-

gated cardboard to provide a small amount of protection

against blast and fragments, with an outer wrap of black

polyethylene for light exclusion was devised, and a phos-
phor screen was used on the side away from the source. A

1.2-cm layer of foam was placed over the package for
additional protection when used at the target.

Figure 1 shows X-rays of the beginning of sabot separa-
tion around a 1.27 cm aluminum sphere fired from the
Ames 1.5" gun at 6.6 km/sec. The sabot was made of

Lexan. Both hard and soft X-ray photographs are shown.

They were taken simultaneously by stacking a soft X-ray

film cassette as described above directly on top of a stan-

dard hard X-ray cassette Note that the edges are signifi-

cantly better defined with the soft X-ray photograph.
Since attenuation of X-rays is proportional to the mass of

material in the path of the beam, where the object, in this
case the sabot, tapers to a thin edge, the contrast at the

edge falls to a very small value. The higher attenuation
ratio of the soft X-rays produces greater contrast in these
regions.

For the same reason, the soft X-ray technique allows

imaging of smaller particles. This is illustrated in figure 2.

The figure shows the debris cloud caused by the impact of
a 1.27 cm diameter sphere at 6.59 km/sec on a 0.1905 cm

thick aluminum plate at an angle of 55 deg from normal to

the flightpath. Figure 3 is an older, hard X-ray picture. It

shows sabot separation from an 0.95 cm sphere fired from

the Ames 1.0" gun. The sabot that appears to have suf-

fered a failure of the aerodynamic separation lip on one or

more quarters, but the hard X-rays produce such low con-

trast in imaging the relatively thin material flying ahead
that it is very difficult to draw useful conclusions. It is

thought that the new soft X-ray system would have been
much more effective in this case.

There is a separate problem of lack of sharpness that also

degrades images. The source of the X-rays is an anode

2.5 mm in diameter. Since there is no feasible way to
focus X-rays, simple ray-tracing shows that if the source-

to-object distance is equal to the object-to-film distance,

we may anticipate a penumbra 2.5 mm wide at each edge

of the image. The actual size of the penumbra appears to
be somewhat less, suggesting that the entire anode is not

acting as a source. This effect is an inherent problem with

X-rays that is essentially solvable only by moving the film
quite close to the object. This, of course, carries the atten-

dant risk of destroying the film by blast or fragments.

The higher-energy portion of the X-ray spectrum remains

useful for imaging within larger masses of material. Fig-

ure 4 illustrates the formation of a crater by the impact of
a 0.476 cm magnesium sphere at 6.6 km/sec on a thermal

protection system tile. The LI-2200 tile is made of low

density sintered ceramic, and is approximately 15 cm

thick in the direction of X-ray penetration. This image

was taken with an early 105 kV system and a hard X-ray

film cassette. It shows an inner layer to the cavity, analo-

gous to a shock front, that includes the projectile and
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Figure 4. Hard X-ray picture of the formation of a crater by the impact of a 0.476 cm magnesium sphere at 6.6 km/sec on
a thermal protection system tile.
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material collected from the cavity already formed. This

was taken approximately 37 gsec after first contact with

the front face. This first contact was sensed by the closure
of an electrical circuit between two layers of 13 micron

thick Mylar mounted on the tile surface, each layer alu-
minized on one side and oriented so that the aluminized

sides faced the approaching projectile. Further details of

the impact tests of the thermal protection system tile are
available in reference 5.

III. Sabot Design and Separation

Sabot design at Ames HFF facilities is constrained by the

necessity of separating the sabot from the model by aero-

dynamic means, as none of the guns is rifled for spin sep-
aration. Sabots commonly have a conical-concave front

face, and the separation process is envisioned to involve

the dynamic pressure within the cavity applying an

impulse to the two or four segments. Since this impulse is

applied ahead of the center of gravity, it was expected to
impart a rotational momentum about the base that would

then expose the mating faces of the sabot to the dynamic
pressure, which would in turn initiate the translational

separation of the segments. Segments would accelerate

away from the model at approximately constant rate, pro-
ducing a parabolic flightpath. The quarters were expected

to continue rotating as they diverge toward the conical

steel stripper, 5.0 meters from the muzzle. The stripper

has a central hole which allows free passage of the model,

while intercepting and deflecting the sabot segments, pre-
venting them from entering the instrumented test range.

Table 1 shows sabot separation data for a number of shots

in the NASA Ames ballistic ranges. The first series of six

shots was made using the Ames 1.0" gun in the HFF facil-
ity Aerodynamics range. Sabot observations were taken at

two X-ray stations, 1.12 and 2.034 m from the muzzle.

The sabot separation characteristics were defined by three

parameters. First is the total sabot opening angle, mea-
sured between two opposite outside sabot surfaces (which

ride on the gun barrel wall). Second is the mean (line)

angle of these same two surfaces. A perfect sabot opening
would always have zero angle here. A finite value here

means that, on the average, the outside sabot surfaces are

tilted either above or below the flight line; that is, the

sabot as a whole has rotated about the flight line. These

values given are absolute values only; the sign has been

dropped. The third parameter is the sabot separation

observed at the distance from the muzzle in question. The

second series of seven shots was made using the Ames

1.5" gun in the HFF facility Radiation range. Sabot obser-
vations were taken at only one X-ray station, 0.81 m from

the muzzle. For a larger number of shots for which shots

R608-R617 are representative, sabot separation data was
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Table 1. Sabot separation data from the NASA Ames 1.0" and 1.5" guns

Air

pressure

in sabot

Projectile separation

diameter, region,
Shot no. Gun mm Torr

A1869 1.0" 9.5 37.5

A1874 1.0" 9.5 45

At889 1.0" 9.5 36

A1906 1.0" 12.7 35

A1907 1.0" 12.7 35

A190? 1.0" 12.7 35

Average 1.0"

R608 1.5" 12.7 32.8

R609 1.5" 12.7 34.1

R610 1.5" 12.7 29.6

R612 1.5" 12.7 28.4

R613 1.5" 12.7 27.4

R615 1.5" 12.7 27.5

R617 1.5" 12.7 28.9

Average 1.5"

Mean

Distance line

from Total sabot angle of

muzzle, opening angle, sabot, Sabot separation,

m deg deg mm

1.12 -0.7 2.1 8.1

1.12 --4 3 5.9

1.12 7 0.5 10.1

1.12 1.4 4.5 6.8

1.12 8.8 3.9 8.6

1.12 7 3.5 6.6

1.12 3.3 (+5.5,-7.3) 2.9 7.7 (+2.4,-1.8)

0.81 2.7 2.9 2.4

0.81 2.5 0.2 2.9

0.81 2.4 0.8 2

0.81 -0.5 1.4 2.3

0.81 5 1.5 2.9

0.81 0 0 No data

0.81 -0.5 1.8 2.2

0.81 1.7 (+3.3,-2.3) 1.2 2.4 (+0.5,-0.4)

Distance

from

muzzle,

m

2.034

2.034

2.034

2.034

5.05

Total sabot

opening angle,

deg

25.7

8.8

59.2/23.4

41.8

29.4 (+29.8,-20.6)

I

Mean

line

angle of

sabot, Sabot separation,
deg mm

6.85 18.1

9.1 21.7

0.6/3.6 21.8

0.9 14.8

5.6 19. I (+2.7,-4.3)

76.4-90.4

(Note that this data for the 1.5" gun is not for the specific shots

listed, but for a larger number of shots of which shots R608-R617

are representative. It is obtained from examining sabot strikes on the

steel stripper cone. This data was taken from 5 stripper cones, each

beating the strikes from 2 or more shots.)
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also obtained from examining the sabot strikes on the

stripper cone 5.05 from the muzzle. This data is also

shown in the table. The data was taken from five different

stripper cones, each bearing strikes from two or more

shots. Since there are strikes from several shots on each

stripper cone, the sabot quarter separations recorded from

the stripper strikes could not be assigned, with any degree
of certainty, to specific shots of the second series.

Because of the imprecision discussed earlier resulting

from the penumbra effect, the accuracy of positions read

from X-rays is not as high as with photographic records,

and none of these sets include simultaneous orthogonal

views, which are required to define angles fully. These

readings are, therefore, not precise enough for rigorous

design, but they do, however, allow some interesting con-
clusions to be drawn.

The first series of readings was taken from tests using the

1.0" light-gas gun, with sabots shown in figure 5(a).
Because of the erosion of the launch tube as discussed

earlier, sabots were made in progressively increasing

diameters, so that they fit firmly into the tube 100 to
150 mm from the end face of the launch tube. This meant

that, for a tube nearing the end of its life, as the sabot

starts to accelerate down the gun barrel, its diameter

would have to decrease by some combination of elastic

and plastic deformation, and possibly wear, by as much as
0.78 mm or 3.1 percent of the original tube diameter.

With the X-rays in use at the time, it was not possible to

read sabot segment dimensions accurately enough to
define what combination of the three processes was act-

ing. The second series of tests was conducted using the
1.5" gun, and the sabot design shown in figure 5(b). In

this case, the diameter was relieved to less than the main

(uneroded) launch tube diameter except for three lands,

each extending about 12 percent of the length.

It is easy to show, by considering the aerodynamic forces

and moments upon the separating sabot sectors, that, dur-

ing the first part of the separation process, one expects

both the normalized separation, _ = y/D and the sabot

opening angle, 0 to be roughly proportional to

2
9g x

tp = 9sD2

where y is the sabot separation distance, D is the barrel

diameter, x is the distance from the muzzle, pg is the
sabot stripping gas density and Ps is the sabot density. We

will refer to q0as the density-distance parameter. From the

data of table 1, we can calculate the tp values for all the
shots from the 1" gun at the two distances from the muz-

zle, 1.12 and 2.034 m and likewise for the 1,5" gun for the
distances of 0.81 and 5.05 m from the nozzle exit.

We have also calculated the corresponding normalized

sabot separations, _ and the sabot opening angles in radi-
ans. Only a single average value of tp and _ were calcu-

lated for the data for the 1.5" gun 5.05 m from the muzzle,
since, as mentioned above, one could not atlribute the

sabot separation data to specific shots. For the three sets

of angle data, only one average value of tp and 0 were cal-

culated for each data set, due to the rather large scatter of
the angle data. (Note that angle data was not available for

the 1.5" gun 5.05 m from the muzzle.)

Before proceeding with the analysis of the sabot separa-
tion data, we note that there are slight differences in the

forms of the sabots for the 1" and 1.5" guns, creating
slight differences in the aerodynamic force and moment
coefficients for these two classes of sabots, It is antici-

pated that these slight differences will not cause the sepa-
ration dynamics of the two types of sabots to different in

any significant way. Hence, we will treat the data for both

guns together in the following discussion. Figure 6 shows

the normalized sabot separation and sabot opening angle

data plotted against the distance-density parameter. We

first discuss the separation data (solid data points). The

round data points are for the 1" gun and the square data

points for the 1.5" gun. For each gu n, the points grouped

at the larger value of q0are for the larger distance from the
muzzle shown in table 1. We note that all four sets of

data, over a 30 to 1 parameter range, lie within +30 per-

cent of a line drawn with _ proportional to q0.This sug-
gests (1) that the sabot separation dynamics for the data

shown here can be fairly well explained by the simple

aerodynamic arguments referred to above and (2) that the

sabots for the 1" and 1.5" guns do, indeed, separate with
very similar dynamics.

We next discuss the sabot opening angle data (open data
points). The round data points are for the 1" gun and the

square data point is for the 1.5" gun. For the 1" gun, the
point at the larger value of q0is for the larger distance

from the muzzle shown in table 1. The sabot opening
angle data clearly has a much larger scatter than the sabot

separation data. Hence, in figure 6, we have plotted only

the average opening angle for each of the three groups of
data. The averaged angle data plotted in figure 6 is rea-

sonably consistent, over a 15 to 1 parameter range, with
the simple aerodynamic model which predicts that 0

should be proportional to qo. (The best fitting line with 0 is

proportional to qois shown dashed in fig. 6.) The two

points above the trend line are about 15 percent high,

whereas the point below the line is about 50 percent low.

All of the shots with the 1" gun were successful. In the

case of shot A1906, with a sabot opening angle at 1.12 m
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Figure 5. Sabot designs. (a) For Ames 1.0"gun with smooth outside diameter, (b) for Ames 1.5"gun with 3 lands and
relieving cuts. Sabots are made in four quarters which fit together along the saw-tooth cuts.
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Figure 6. Normalized sabot separation or angle versus the distance-density parameter for a number of shots on the NASA
Ames 1.0" and 1.5" guns.

from the muzzle of the relatively small value of 1.4 deg,
the separation at 2.034 m from the muzzle was at the

higher end of the scatter range. We note that three of the

seven shots with the 1.5" gun had sabot opening angles
0.81 m from the muzzle which were effectively zero.

(Because of the angle of the conical separation cavity, a

zero angle is still expected to produce an aerodynamic

separation force.) Despite these smaller sabot opening

angles, the separation process was completely reliable and

consistent for all shots for the 1.5" gun. There appears to

be a somewhat smaller scatter in the sabot separation data

for the 1.5" gun, 0.81 m from the muzzle (about 19 per-
cent) than for the 1" gun, 1.12 m from the muzzle (about
27 percent).

The radius difference between the lands and the relieved

areas on the second-series sabots were measured with

some confidence, since penumbra and penetration effects

were expected to be comparable in the two areas. For six

shots, the radius differences before firing were

1.384 + 0.013 mm and those after firings, measured from
+0 152

the X-ray photographs, were 1.524_01127 mm. The values
after firing were larger by 0.025-0.28 mm. This leads to

the conclusions that (1) the measuring accuracy was

approximately 0.28 mm and (2) the wear during launch

was very close to zero, a rather surprising observation.

Furthermore, examination of figure 1 indicates that the

relief areas are straight and well formed, and thus that

there was no detectable plastic deformation. If this is

indeed true, then the entire deflection of the sabot diame-

ter in traversing the launch tube would appear to be elas-

tic. This is rather remarkable, since computational fluid

dynamics (CFD) calculations (refs. 6 and 7) of the maxi-

mum sabot base pressures for conditions very similar to

those of shots R608-R617 yielded values of about

1600 bar, well above the quoted low strain rate compres-

sive strengths (ref. 8) of 690-860 bar for Lexan (poly-

carbonate). This unexpected behavior may be similar to
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the apparent ability of the polyethylene piston in the

Ames 1.5" light gas gun to behave as though its high

strain rate yield stress (during the gun firing cycle) is sub-

stantially higher (ref. 9) than its low strain rate value

quoted in the literature.

There is a region of flight just outside the muzzle where

the projectile is immersed in a flow of propellant gases

escaping from the gun. This region is characterized by
flows passing over the model in the reverse direction from

normal flight, and by rapidly changing environment as the

propellant gases expand into the atmosphere beyond the
muzzle. Properties within this so-called "intermediate

ballistics" region have been studied, as in reference 10,
but no analysis has been done at NASA Ames to define

the behavior or extent of this region. The low pressure

outside the muzzle (20-50 Torr), the high propagation
velocity of the hydrogen propellant, and the chemical

reactivity at the hydrogen/air interface very likely make

the region large and complex, when compared to the more

common case of powder driven weapons firing into atmo-
sphere. The actual intermediate ballistics environment for

two-stage light gas guns is very poorly understood.

In the intermediate ballistics zone, with reversed flow

over the sabot, the sabot is usually not shaped to generate

gas dynamic forces tending to produce separation. It may,

however, have substantial elastic energy stored as a result
of the radial compression in the launch tube that is

released rapidly as it emerges from the muzzle, and this

momentum may provide the dominant separating action
during the critical initial stage. The strain energy in a uni-
form cylindrical Lexan sabot with a radial stress at the

compressive yield strength (assumed here to be 690 bar

(ref. 8)) can readily be calculated. If all this energy is

assumed to be converted into radial kinetic energy, the

radial velocity of the sabot quarters, upon exiting the
muzzle, can be calculated to be 42.5 m/sec. For a launch

velocity of 6.6 km/sec, this translates to a sabot quarter
separation, at a distance of 1.12 m from the muzzle, of

14.4 mm. Comparing this to the observed values of

6--10 mm (for the first series of table 1), it appears that

this elastic energy may be capable of producing the
observed sabot separations. There may be, of course,

many unknown differences between this simple model
and the actual situation. In particular, the actual in-barrel

sabot radial stress state may be very complex and the

efficiency of the conversion of the sabot strain energy into
radial kinetic energy is unknown. The sabots of the
second series of table 1 would have a smaller fraction of

their mass affected by this radial compression, since the

lands bear on the gun barrel for only about 36 percent of

the total sabot length. Hence, the release of stress at the

muzzle should produce less separating momentum.

There is a difficulty with the explanation that elastic

energy is responsible for a significant part of the initial
sabot separation process. Such an explanation would

appear to predict a correlation between the progressively
increasing diameter of the eroding gun barrel, hence the

amount of radial compression that the sabot in subjected
to when it is initially set into motion, and the extent of the

sabot separation observed at the first X-ray station. Nei-

ther series of shots of table 1 shows a readily apparent
correlation of this sort.

IV. Gun Barrel Erosion

A. General

An undesirable result of the high temperature of the
hydrogen driver gas is the erosion of the inside bore of the

gun barrel. This erosion is costly because it requires relin-
ing or replacing gun barrels after some tens of shots, and

degrades performance by adding iron vapor to the other-

wise low molecular weight hydrogen gas. A criterion for a
peak temperature of 1200K in the steel tube wall to realize

zero erosion has been reported in reference 11. The gun
barrels were measured during several series of shots to

attempt to characterize erosion. The depth of measure-

ments along the tube axis was limited by the available
telescoping gages, so it was not possible to determine at
what depth the erosion decreased to zero. We note that

approximately the first caliber of gun barrel depth is

modified by a radius and a relief for the petalling
diaphragm (break valve).

Table 2 gives the gun operating conditions for the gun
erosion data to be discussed in this section. Data from

threeguns (0.5", 1.0", and 1.5") at the NASA Ames

Research Center are included. For the Ames 0.5" and 1.5"

guns, data from several different series of shots are

included. For these same two guns, data was taken with

the full pump tube volume and with the pump tube vol-

ume reduced to about 60 percent of its original value. To
allow easy comparisons between the data for the different

guns, all masses and volumes in table 2 have been normal-

ized by the barrel diameter cubed (D3).

Figure 7 shows gun erosion data, in terms of increasing
barrel diameter, for one gun barrel liner for the NASA
Ames 1.5" gun. The measurements were taken at four

locations, 2, 2.67, 3.33, and 4 calibers deep in the gun

barrel. These data were taken over the time period of all

22 shots shown in table 2 for this gun. Figure 8 shows gun

erosion data for two series of shots on two different gun

barrel liners, for the NASA Ames 1.0" gun. (We note here

that the Ames 1.0" and 1.5" guns are nearly linearly

10



Table 2. Gun firing conditions for gun erosion data

Gun Data date

Powder

No. of mass/D 3,

shots gm/cm 3

Piston Hydrogen, Hydrogen

mass/D 3, pressure, mass/D 3, Pump tube

gm/cm 3 bar gnYcm 3 length

Pump tube

volume/D 3

Break valve

rupture pr.,

bar

Projectile

mass/D 3

gm/cm 3

Projectile

velocity,

km/sec
Ames 0.5" 1966,69 13 61-134

Ames 0.5" 1995 4 91.3-95.2

Ames 0.5" 1995 12 85.4--96.2

Ames 1.0" 1987-90 45 42.7-76.9

Ames 1.5" 1994-95 19 50.8-59.6

Ames 1.5" 1995 3 51.3

433-544 0.69-2.07 1.40-4.20 Full

399-401 1.32-2.07 2.68-4.20 Full

345-354 1.70-3.39 2.11-4.21 Shorter

336-443 3.45-5.17 3.46-5.19 Full

309-388 3.1 2.97 Full

309 4.71 2.97 Shorter

24,900

24,900

15,200

12,300

11,700

7,710

344-1380

289

289

345

586-1170

827

0.434-0.947

0.572-0.686

0.571--0.685

0.702-2.935

0.529-0.592

0.519-0.607

4.89-9.46

6.28-7.37

5.4-8.17

4.4--6.7

5.5_.8

6.9-7.2
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scaled copies of each other.) The measurements were

taken 4 calibers deep in the gun barrel. This data was

taken for the operating conditions of the Ames 1.0" gun
shown in table 2. Three different erosion rates are

observed in figure 8. For the gun liner with the solid data

points, a relatively constant erosion rate is apparent. For
the other gun barrel liner, a lower erosion rate is noted

from shots 1 to 22, followed by a sharply higher erosion

rate for shots 23 to 34. The changes in the erosion rates

are due to changes in the gun operating conditions-for

example, increasing the powder mass or decreasing the

hydrogen fill pressure will increase the gun erosion. (We

will return to this issue at a later point.)

Figure 9 shows gun erosion data for two series of shots on

two different gun barrel liners, for the NASA Ames 0.5"

gun. (The Ames 0.5" guns is also nearly linearly scaled

from the other two, larger, guns. It does have, however,

about twice the normalized pump tube volume when

compared to the two larger guns.) The measurements

were taken 4 calibers deep in the gun barrel. This data was

taken for the second and third sets of operating conditions

of the Ames 0.5" gun shown in "table 2. The upper curve
used data form the second data set in table 2 and the first

three shots of the third set of data. The barrel was then

changed; the lower curve of figure 9 is from the remaining
shots in the third data set of table 2. For the lower curve of

figure 9, the complete barrel history is known, including
the initial barrel diameter. On the other hand, for the

upper curve, the barrel history before the first data point
shown and the initial barrel diameter are not known. Thus,

the both the abscissae and the ordinates of the upper data

curve in figure 9 are somewhat arbitrary, The slope of the
curve, however, can be compared with that of the lower

curve. The barrel diameter of the upper curve has been

normalized by the nominal barrel diameter (exactly 0.5")
since the true initial barrel diameter is unknown. Initial

diameters of gun barrels for the 0.5" have been measured
to be as large as 0.507",

Figure 10 shows the barrel shapes measured after various

numbers of shots for the Ames 1.5" and 0.5" guns. This

data was taken from the same shots which yielded the data

of figures 7 and 9. The erosion data for the 1.0" gun was

taken at only one depth in the barrel and thus barrel shape

data is not available for that gun. The data for the 1.5"' gun
is essentially a cross plot of the data of figure 9, with the
addition of extra points measured after 22 shots. After

1.030

1.025

1.020

¢d

1.015

°_

r.., 1.010
r._

1.005

_ -r'rrr-r';a-r_ -rT-rrTr-r-r_ -rrrr-D-rrr

1.000q 1.020
0 2 4 6 8 10 12

1.050

1.045

1.040

_o

1.035 _
t_

1.030 ""

r_

1.025

Number of shots

Figure 9. Barrel diameters at 4 calibers depth for two series of shots on the NASA Ames 0.5" gun. For upper curve, the

absolute values of the abscissae and ordinates are not known (see text for further discussion), but the slope is correct.
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Figure 10. Barrel diameter versus depth after various numbers of shots for one series of shots on the NASA Ames 0.5"
gun and one series on the Ames 1.5"gun.

22 shots, the barrel diameter was also measured at

33.3 calibers depth, and no erosion was found, i.e., the

barrel diameter was measured to be exactly 1.0000 cal-

ibers at that location. This single measurement very deep

in the barrel was possible because, after 22 shots, the

barrel liner was removed and replaced with a new liner.

The old liner was then cut up, allowing a measurement to

be taken at depths normally inaccessible while the liner

remains in service. The data for the 0.5" gun was from the

shots in the third data set for this gun in table 2. This is for

the barrel for which the complete history is known. Barrel

shape data for the 0.5" gun barrel for which the complete
barrel history is not known have are not given here; the

location of such curves on figure 10 would be too
uncertain.

The curves of figure 10, presented in normalized form,

should allow one to make rough estimates for the barrel

erosion to be expected in other guns, provided that the

barrel erosion is known at 4 calibers depth. Obviously, the
operating conditions and the gun geometries for other
guns should not be too dissimilar to those of the Ames

guns to allow the data of figure 10 to apply reasonably
well. The Ames gun barrels are made of carbon steel. The

data of figure 10 would not apply to guns whose barrels
made of materials whose erosion characteristics are sub-

stantially different from those of carbon steel.

We now will attempt to correlate the gun erosion data at

about 4 calibers depth with the gun operating parameters.

Table 3 summarizes the quality of these data sets. The

data sets listed below correspond exactly to the data sets
of table 2 except that the data for the last nine shots in the

third data set for the Ames 0.5" gun in table 2 is not used
in the development of the present section. There are two

main issues of data quality--availability of actual barrel

measurements and the severity of the data grouping
problem. It is obviously better to have actual barrel
dimensions available. These measurements are taken with

telescoping gauges which fit into the gun barrel. However,

for two of the four data sets shown in table 3, only sabot

diameters are available. (The original barrel measure-

ments which lead to the selection of the steadily increas-
ing sabot diameters for these two data sets have been lost.)
For these two data sets, the barrel diameter at about 4 cal-

ibers depth (which is roughly the distance the sabot is

forced into the barrel before the gun is fired) is estimated
from the sabot diameters only.

14



Table3.Qualityofbarrelerosiondataat4calibersdepth

Gun Datadate Number Barrel Projectile Severityof Overall
ofshots diameters diameters datagrouping data

available available problem quality

Ames 0.5" 1966,69
Ames 0.5" 1995

Ames 1.0" 1987-90

Ames 1.5" 1994,95

13 No Yes None Good

7 Yes Yes None Excellent

45 No Yes Severe Marginal

22 Yes Yes Minimal Very good

The data grouping problem is as follows. For some data

sets (particularly the data set for the 1.0" gun listed in
table 3) barrel or sabot diameter information is not avail-

able for every shot. This means that the barrel diameter

increases which are available can include the effects of

two up to as many as five shots. If the shots between

diameter measurements are at nearly identical gun operat-
ing conditions, the problem is minor. However, for the

data for the 1.0" gun listed in table 3, there are substantial

differences in powder loads and hydrogen fill pressure for
some series of shots between available sabot diameter

measurements. For correlating such data, these gun

operating parameters must be averaged between the shots
for which sabot diameter data is available. This leads to

deterioration of the data. Hence, the data for the 1.0" gun

is of marginal quality. The data grouping problem is'of
little or no consequence for the data for the 0.5" and 1.5"

guns.

The data for the 0.5" gun was the most useful in develop-
ing a correlation for gun erosion. This data showed the

effects of two main parameters, the normalized powder

mass (Mpn) and the ratio of the powder mass divided by

the hydrogen mass (Rph), that is

M
pn

(Powder mass)

(Barrel diameter) 3

and

_ (Powder mass)

Rph (Hydrogen mass)

Rph is essentially a measure of the specific enthalpy

which one expects the hydrogen to be heated following

the combustion of the powder, the acceleration of the pis-

ton and the compression of the hydrogen. Mpn is Rph
multiplied by the hydrogen mass and normalized by the

cube of the barrel diameter. Thus Mph is a measure of

normalized energy content of the hydrogen gas. It can
readily be shown that the erosion data for the Ames 0.5"

gun correlates much better with a combination of Mpn and
Rph than with either parameter alone. The best linear

combination of Mpn and Rph was found to be _, where

= Mpn + 0.564Rph

We will refer to _ as the powder mass parameter. The

coefficient 0.564 of Rph was found by plotting the gun

erosion per shot versus Mpn and Rph and estimating the
average slope of the lines of constant erosion.

Figure 11 shows the correlation of the gun erosion data

for the 0.5", 1.0", and 1.5" guns versus the powder mass

parameter. At first, we will ignore the open data points,

which are for operation with the shortened pump tubes for

the 0.5" and 1.5" guns. The solid circle data points are
those for the 0.5" which allowed us to determine the form

of the powder mass parameter, _. Next, we consider the

solid diamond data points, for the 1.5" gun. There are only

three data points shown on figure 11 for the 1.5" gun with

full length pump tube, even though there are 19 shots in
this series listed in table 2. Barrel diameters were not

measured for all shots, as mentioned above, and therefore,
in several cases, measured barrel diameter increases

include the effects of more than one shot. The data was

therefore grouped into three bins. In this case, the data

grouping produces little or no problem, because, when the
available barrel diameter increases included the effect of

more than one shot, all of the firing conditions of those

shots were identical or very nearly so. That is, for the 1.5"
gun, for the firing conditions between barrel diameter

measurements, there was no variation of pump tube fill
pressure and the powder mass variations were limited to 1
to 2 percent, except for one shot, which had a variation of

10 percent. The three data points for the 1.5" gun, all

15
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Figure 11. Barrel erosion per shot at approximately four calibers depth for the NASA Ames 0.5", 1.0", and 1.5" guns. It is

plotted versus the powder mass parameter. A trend line for the data is also shown. Data with shortened pump tubes is
denoted by hollow data points; for these points, the powder mass parameter has been adjusted; see text for details.

located between _ = 60 and _ = 70, are in reasonably good
agreement with the extrapolated trend line from the data
for the 0.5" gun.

We next turn to the data for the 1.0" gun. As mentioned

early, this data had severe data grouping problems and
was judged to be of marginal quality. Nevertheless, an

attempt was made to plot this data on figure 11. For lack

of barrel diameter measurements taken for every shot, the

data for 45 shots of the 1.0" gun, of necessity, had to be

grouped to provide not more than 21 data points. These

were plotted on an early version of figure 11 (not shown

here) and, in fact, straddled the trend line defined by the
data from the 0.5" and 1.5" guns rather well, but had a

very large scatter range (2 to 3 times that shown in

fig. 11). To reduce the scatter, these 21 data points were

then grouped in 5 bins based on the range of the values of
_. The resulting averaged data points for the 5 bins are

shown in figure 11 as the solid square data points. It is

seen that the solid data points for the 1.0" guns are in

reasonably good agreement with the trend line defined by

the data from the 0.5" and 1.5" guns. That is, a reasonably

consistent trend line can be drawn through the data for all
three guns.

Note the very rapid increase in gun erosion shown in fig-
ure 11 as _ is increased. As _ increases by a factor of 3,

the normalized gun erosion increases by a factor of 30.

Figure 11, together with figure 10, showing eroded barrel

shapes, should enable one to make rough estimates for

gun erosion to be expected for two-stage light gas guns

other than the Ames guns investigated here. Clearly, such
estimates would not be expected to be reliable if the other

guns differed radically from the Ames guns radically

regarding (1) gun geometry/configuration, (2) normalized

gun operating conditions, and (3) barrel material.

Nevertheless, it is known that many two-stage light gas

guns are, in fact, rather similar to those at Ames, and for

such guns in service or being built or designed, figures 10

and 11 may provide useful rough estimates of erosion to
be expected.
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We now turn to the limited data with the shortened pump

tubes. The original data yields 4 data points on figure 11.

There are three open circle data points for the 0.5" gun

and one open diamond data point for the 1.5" gun. On
examining these data and comparing them to the corre-

sponding data with full length pump tubes, it was clear

that the reduction of the pump tube length produced a
substantial reduction in gun erosion. (This effect will be

discussed further in sec. IVB.) With the very limited data
with shortened pump tubes available to us, the authors

were not able to extract the effect of the pump tube length

(or volume) in terms of a third parameter which would

have corresponded to Mpn and Rph introduced above.
However, it was found that the gun erosion for shots with

shortened pump tubes was very similar to that for corre-

sponding shots with full length pump tubes at the same fill

pressure. These shots with similar gun erosion do not,

then, have the same hydrogen mass. In placing the data

points for shots with shortened pump tubes on figure 11,

an adjusted "hydrogen mass" is used. This adjusted

"hydrogen mass" is not equal to the true hydrogen mass as

it is for all other data points. It is based on the hydrogen

fill pressure for the shortened pump tube, but the pump
tube volume for the full length pump tube. This heuristic

procedure brings the data points taken with shortened

pump tubes into reasonable agreement with the remaining
data points in figure 11. (If, on the other hand, the true

values for _ for the cases with the shortened pump tubes
had been used in figure 11, these values would be

6-9 percent higher than the adjusted values and would
tend, on the whole, to make the data for the shortened

pump tube cases fall significantly below the trend line of

fig. 11.) This discussion allows one to make very rough

estimates of how shortening the pump tube might be

expected to reduce gun erosion. We emphasize again that
our data in this regard is limited and the authors would

welcome additional gun erosion data in connection with

changes in pump tube volume from other workers.

B. Changes in Gun Operating Conditions Used at
Ames to Reduce Gun Erosion

We first discuss work done on the Ames 1.5" gun. Table 4

presents data on barrel erosion per shot for the Ames 1.5"
gun. This data is for the same shots for which data was

given in figures 7, 10, and 11. As mentioned previously,
there are considerable amounts of scatter in the erosion

data. Hence, in addition to the basic data, we have

averaged the erosion rates at the four depths to provide the

averaged data shown in the last column. This averaged
data provides, perhaps, the best assessment of the effects

of changing gun operating conditions on the erosion rate.

The first three rows of data are grouped by powder load

and yield the solid diamond data points plotted in fig-

ure 11. On increasing the powder mass parameter, _, from

64.42 to 66.28, the erosion is seen to increase by 72 per-

cent. On the other hand, on decreasing _ from 64.42

to 60.82, the erosion is seen to decrease by 30 percent.

These are the same changes evident in figure 11.

After the tests of the third row of table 4, two segments of

the pump tube of the gun were removed, reducing the

pump tube volume by 33 percent. The hydrogen fill

pressure in the pump tube was correspondingly increased
to maintain the mass of hydrogen constant. Three shots

were then made with the reduced pump tube length. Two
of these shots were very successful; erosion data for them

is reported in row 4 of table 4. It is seen that reduction of

the pump tube volume by 33 percent, while maintaining

the hydrogen mass, resulted in a 35 percent reduction in

gun erosion, a very substantial improvement. Further-

more, this reduction in gun erosion was accompanied by

an increase in muzzle velocity from 6.82 km/sec to about
7.1 km/sec. The data point for these two shots with

reduced pump tube length is the open diamond point in
figure 11 (based on the adjusted powder mass parameter).

On one shot with the reduced pump tube length, the

hydrogen pump tube gas charge was inadvertently

contaminated with 16 percent helium and 5 percent air.
The data for this shot is given in the last row of table 4. It

is seen that this contaminated pump tube gas leads to very
greatly increased barrel erosion. (Helium is well known to

be highly erosive as a pump tube gas.) The average
erosion noted for this shot was 4.4 times that for the other

two shots with reduced pump tube length, 2.9 times that

for the shots with full pump tube length and reduced
powder mass and even 2.0 times that for the shots with

full pump tube length and the higher powder charge
(2995 gm). In addition, the muzzle velocity for this shot
was greatly reduced, from about 7.1 km/sec to about
5.5 km/sec.

We now discuss work done on the Ames 0.5" gun. In
figure 12, we show the gun erosion, in calibers/shots, for
the series of shots on the Ames 0.5" shown in table 3. We

have added trend lines for the old data and two groupings
of the new data, with the full length and the shortened

pump tube. Very few changes have been made in the gun

operating parameters from the 1960s data shown here up
until the present optimization effort. The data from the

1960s shown in figure 12 is virtually the only good data

taken previous to the 1990s for the Ames 0.5" gun with

gun operating parameters anywhere near those now being
used. All gun erosion data is taken at about 4 calibers

depth in the barrel. The projectile mass for the seven

recent shots varied between 1.17 and 1.35 gm, the average

being 1.26 gm. To allow for the variation in projectile
mass for the various shots, the muzzle velocities were
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Powder mass, gm

3082

2995

2831

2835

2835

Powder mass parameter

True A_usted

66.28

64.42

60.82

60.98 57.66

60.98 57.66

Table 4. Gun barrel growth per shot for Ames 1.5" gun

Remarks

Shorter pump tube

Shorter pump tube + helium

Number of shots

3

l0 to 13

1 to3

2

1

0.00311

0.00149

0.001

0.00153

0.00267

Gun barrel growth, calibers per shot

Depth, calibers

0.00178

0.00123

0.00033

0.00023

0.0028

Average for all depths

0.0022

0.00118

0.00118

-0.00043

0.00293

0.002

0.00138

0.00122

0.0011

0.0024

2.67 3.33

0.00227

0.00132

0.00093

0.00061

0.0027
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Figure 12. Barrel erosion per shot plotted versus normalized projectile velocity for several series of shots on the NASA

Ames 0.5" gun. Data is shown for two series of shots with the full length pump tube and one series with the shortened
pump tube. Trend lines for the three sets of data are also shown.

normalized, on a kinetic energy basis, to a projectile mass
of 1.26 gin. That is, if the true muzzle velocity of a

1.17 gm projectile was 8 km/sec, its normalized muzzle

velocity would be (1.17/1.26) 0.5 x 8 = 7.71 km/sec. The

normalized muzzle velocity is the ordinate in figure 12.
The same normalization procedure was followed for the

data from the 1960s, for which the projectile mass varied
from 0.89 to 1.93 gm.

The piston masses for the old data were between 888 and

1115 grams, whereas for the new data, lighter pistons with
masses between 707 and 821 grams were used. For some

of the low performance data from the 1960s, powder

masses of 125 (for one shot) and 175 gm were used, but
for most of the higher performance 1960s shots, the

powder masses ranged from 200 to 275 grams. The
hydrogen fill pressures for the data from the 1960s was

between 0.69 and 2.07 bar. Only the last three shots of the

recent data set has the benefit of the shortened pump tube.
For all except one of the shots in the 1960s, the break

valve pressure had the very high value of 1380 bar,

whereas for the shots in the 1990s, the break valve

pressures are only 289 bar. The conditions for the shots in

the 1990s (even with the full length pump tube), have

been selected guided by an extensive CFD optimization

study which indicated that improved gun performance

could be obtained at conditions considerably different
from those used in the 1960s. Further details of this

optimization effort are given in reference 12.

The typical large scatter of the erosion data is again

evident in figure 12. A rough assessment of accuracy can

be made by grouping data for similar (but not identical

shots) and giving the mean and the total scatter range for

the grouped data. For example, for the 1960s data

between 6.8 and 7.1 km/sec, the erosion can be given as
+0 0033

0.0047_010027 calibers/shot (3 data points). For the 1960s

data between 7.6 and 8.4 km/sec, the erosion can be given
..... +0.0053

as u.uuo/_0.0047 calibers/shot (7 data points). For all of

the new data grouped together, the erosion can be given as
+0 0021

0.0029_.010019 calibers/shot (7 data points). For the new

data with the shortened pump tube, the erosion can be

o n^_+0"002 calibers/shot (3 data points).given as _._u_-0.002

Although it clearly would be better to have data with

better statistics, the author believes the data shown in

figure 12 is strongly indicative of substantial reductions in

gun erosion achieved as a result of the CFD optimization

process. For example, even with the standard length pump

tube, one may make an argument for about a factor of 1.5
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reduction in gun erosion between the 1960s and the pre-

sent, optimized gun operating conditions for normalized

muzzle velocities between 6.6 and 7.2 km/sec. Comparing

the new data with the shortened pump tube with the old

data for normalized muzzle velocities between 7.5 and

8.4 kin/see, we see strong evidence for about a factor of 2

reduction in gun erosion achieved as a result of the CFD

optimization process.

A new CFD gun code (ONEDIM) written at Ames, was

used to guide certain changes in the operating conditions

of the Ames 1.5" and 0.5" guns. A description of the code
and code validation are presented in reference 6 and addi-

tional details of the use of the code to optimize operation
of the Ames 1.5" gun are given in reference 7. The

changes of the gun operating conditions from those of row

2 in table 4 to those of row 3 were guided by code
predictions. These changes included the reduction in

powder mass shown in table 4 as well as a reduction in

piston mass from 21.42 kg to 17.06 kg. These changes

produced the 30 percent reduction in gun erosion men-
tioned earlier, as well as a modest increase in muzzle

velocity, from 6.72 to 6.82 kin/see. A second set of

changes of gun operating conditions guided by the code

was also instituted. These changes were those between the
conditions shown in rows 3 and 4 of table 4. As men-

tioned previously, this involved reducing the pump tube

volume by 33 percent, while maintaining the same

hydrogen mass. Along with the pump tube volume reduc-

tion, the break valve (diaphragm) rupture pressure was
reduced from about 1200 bar to about 800 bar. These

changes resulted in a further 30 percent reduction in pump
tube erosion, mentioned above, and a significant further

increase in muzzle velocity, from 6.82 to 7.22 km/sec, for

one of the good shots. For the other good shot with the

reduced pump tube length, a considerably heavier pro-
jectile was used, 33.8 gm versus 29.5 grn. Even with the

heavier projectile, the reduced pump tube length produced
a velocity increase, from 6.82 to 7.06 krn/sec.

The CFD optimizations process for operation of the Ames
0.5" gun is described in detail in reference 12. In that

reference, it was noted that shortening of the pump tube

resulted in an increase in maximum muzzle velocity (for
projectiles weighing 1.17-1.35 gms) from 7.35 to

8.2 km/sec. The latter velocity considerably exceeds the

previous all-time maximum velocity for this gun with
saboted spheres--7.4 km/sec. These increases in muzzle
velocity were obtained with reductions of barrel erosion

of 30-50 percent, as noted above.

The CFD code was judged to be very valuable in selecting
the best operating conditions for the Ames 0.5" and 1.5"

guns.

V. Summary and Conclusions

We have described a number of recent findings in work

done at the Hypervelocity Free Flight (HFF) facility
(ballistic range complex) at NASA's Ames Research

Center. Behavior of sabots during separation and

projectile-target impact phenomena have long been

observed by means of short-duration flash X-rays: most of

the photographs taken to date have used "hard" X-rays.

The hard X-ray techniques frequently result in rather poor

definition of the object in question. Newer X-ray systems

also allow operation in the lower-energy ("soft") X-ray

range. Photographs taken with hard and soft X-rays have
been presented and significantly improved definition was

observed using the soft X-rays for certain objects. Soft

X-rays were shown to produce excellent pictures of sabot

separations and of debris clouds produced upon impact.

Hard X-rays were shown to remain useful for viewing
events deep within blocks of material.

The dynamics of sabot-separation for the Ames 1.0" and

1.5" guns has been investigated in some depth. X-ray
photographs were studied at two different distances from

the muzzle for the 1.0" gun. Only one set of X-ray data

was available for the 1.5" gun, but this was supplemented
by data obtained from the sabot strikes on the sabot

stripper cone considerably farther from the muzzle. Two

different sabot designs were studied. The first had a

constant outside diameter which rode on the barrel wail.

The second design had three lands, totaling 36 percent of
the sabot length, bearing on the tube bore; the remainder

of the sabot diameter was undercut, to run free of the

barrel bore. The separation process for the sabots for the

1.0" and 1.5" guns was found to be reasonably consistent

with the conventional aerodynamic theory. The sabots for

the two guns were found to have very similar separation
dynamics.

The sabot is significantly compressed radially in the gun

barrel. There is thus a certain amount of elastic energy

stored in the sabot while it traverses the barrel. Upon
muzzle exit, this energy is available to initiate lateral
sabot separation. The sabots with three lands would have

much less elastic energy available than those which bear

on the barrel wall for the entire sabot length. The sabots
with three lands also show no evidence of wear or elastic

deformation within the barrel. This observation was

surprising, since the base pressures expected on the sabot

substantially exceed the published low strain rate yield
stress for the sabot material. This anomalous behavior of

the sabot material may be related with similar anomalous

behavior of the pump tube pistons observed elsewhere
(ref. 9).
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A detailed study of gun erosion data for the NASA Ames

0.5", 1.0", and 1.5" guns has been presented. The data

shows a very strong correlation with the powder mass

parameter, which is a linear combination of the powder

mass divided by hydrogen mass and the powder mass
divided by the barrel diameter cubed. The data sets for the

three guns were found to agree fairly well with each other.

The barrel erosion is shown to increase very rapidly as the

powder mass parameter increases. As the powder mass

parameter increases by a factor of 3, the gun erosion

increases by a factor of 30. Representative shapes of

eroded gun barrels have been presented. Guided by a new

NASA Ames CFD code (ONEDIM), two sets of changes

of gun operating conditions have been implemented for
the Ames 0.5" and 1.5" guns. The first involved a

decrease in the piston mass, powder load and, at times, the

hydrogen fill pressure. The second involved reducing the

pump tube volume by 30-40 percent, while maintaining
the mass of hydrogen and reducing the break valve

(diaphragm) rupture pressure. The two changes taken

together produced increases in muzzle velocity from

0.5-0.8 km/sec, together with decreases in gun erosion by

30-50 percent. The code was thus judged to be very
helpful in the selection of operating conditions of the

Ames 0.5" and 1.5" guns. On one shot with the 1.5" gun,

the hydrogen pump tube gas charge was inadvertently

contaminated with 16 percent helium and 5 percent air.

The contaminated pump tube gas lead to very greatly
increased barrel erosion. The average erosion for this shot

was about four times greater than the corresponding

reference shots and the muzzle velocity was greatly
reduced, from about 7.1 to about 5.5 km/sec.
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